信途科技今天给各位分享python编程推广方案的知识,其中也会对python创意编程进行解释,如果能碰巧解决你现在面临的问题,别忘了关注和分享本站。
我想学习python编程,该如何做呢?
初学的话建议先看
《Learning Python》和《dive into python》,都有中文版的。
xintu.python.org 是python的官网,上面有很多你想要的资讯,平常可以多上去看看,不过对于e文不是很好的人就有点郁闷。
学一门语言最好是边用边学,所以先到xintu.python.org那下载并装上python来玩玩。
当你入门了之后,《Python in a Nutshell》是一本挺有用的参考书,这样你就不用记太多东西(比如内置函数或模块),随时翻阅查找。
另外,在你写程序之前先google一下,看看网上有没有写了相似的模块,因为国外经常有一些牛人写了一些很好用的模块,重用它们会提高你的编程速度
为什么说Python是值得学习的编程语言
也许最初设计 Python 这种语言的人并没有想到今天Python 会在工业和科研上获得如此广泛的使用。著名的自由软件作者Eric Raymond 在他的文章《如何成为一名黑客》中,将Python 列为黑客应当学习的四种编程语言之一,并建议人们从Python 开始学习编程。这的确是一个中肯的建议,对于那些从来没有学习过编程或者并非计算机专业的编程学习者而言,Python 是最好的选择之一。Python 第一次学习Python,我只用了不到二十分钟的时间,站在书店里把一本教初学编程的人学习Python 的书翻了一遍。也是从那时起,我开始被这种神奇的语言吸引。 Python 可以用来开发symbian 上的东西。 易用与速度的完美结合Python 是一种用起来很方便的语言,很多初学Java 的人都会被 Java 的CLASSPATH 搞得晕头转向,花上半天的时间才搞明白原来是CLASSPATH 搞错了自己的 Hello World 才没法运行。用Python 就不会有这种问题,只要装上就能直接用。 Python 是一种脚本语言,写好了就可以直接运行,省去了编译链接的麻烦,对于需要多动手实践的初学者而言,也就是少了出错的机会。而且Python 还有一种交互的方式,如果是一段简单的小程序,连编辑器都可以省了,直接敲进去就能运行。Python 是一种清晰的语言,用缩进来表示程序的嵌套关系可谓是一种创举,把过去软性的编程风格升级为硬性的语法规定。再不需要在不同的风格间选择、再不需要为不同的风格争执。与 Perl 不同,Python 中没有各种隐晦的缩写,不需要去强记各种奇怪的符号的含义。Python 写的程序很容易懂,这是不少人的共识。Python 是一种面向对象的语言,但它的面向对象却不象C++那样强调概念,而是更注重实用。不是为了体现对概念的完整支持而把语言搞得很复杂,而是用最简单的方法让编程者能够享受到面向对象带来的好处,这正是 Python 能像 Java、C#那样吸引众多支持者的原因之一。 Python 是一种功能丰富的语言,它拥有一个强大的基本类库和数量众多的第三方扩展,使得Python 程序员无需去羡慕Java 的JDK。Python 为程序员提供了丰富的基本功能使得人们写程序时用不着一切最底层做起。说到这里,人们通常会用一种担心:脚本语言通常很慢。脚本语言从运行的速度讲的确会慢一些,但 Python 的速度却比人们想象得快很多。虽然 Python 是一种脚本语言,但实际上也可以对它进行编译,就象编译Java 程序一样将Python 程序编译为一种特殊的ByteCode,在程序运行时,执行的是ByteCode,省去了对程序文本的分析解释,速度自然提升很多。在用Java 编程是,人们崇尚一种Pure Java 的方式,除了虚拟机一切东西都用Java 编写,无论是基本的数据结构还是图形界面,而Pure Java 的SWING,却成为无数Java 应用开发者的噩梦。Python 崇尚的是实用,它的整体环境是用C 来编写的,很多基本的功能和扩展的模块都是用 C/C++来编写的,当执行这一部分代码时,它的速度就是C 的速度。用Python 编写的普通桌面程序,其启动运行速度与用C 写的程序差别不大。除了这些,通过一些第三方软件包,用Python 编写的源代码还可以以类似JIT 的方式运行,而这可以大大提高Python 代码的运行速度,针对不同类型的代码,会有2 倍至100 倍不等的速度提升。 Python 是我见到过的语言中,在易用性和速度上结合的最完美的一个,通过丧失一点点经常可以忽略不计的运行速度从而获得更高的编程效率,这就是我选择Python 的原因。把精力放在要解决的问题上选择一种合适的语言,才能让你把有限的精力放到最需要解决的问题上。不同的语言有不同的作用,C 和汇编适合编写系统软件,如果用它们来编写企业应用,恐怕没几个人能得心应手。我以前就碰到一个用汇编写数据库程序的哥,虽然最基本的功能完成了,但要增加个报表预览什么的,他就没法应付了。聪明的程序员是用合适的工具去完成任务,想找一把万能钥匙是不太可能的。Python 的自动的垃圾回收机制是高级的编程语言的一种基本特性,用拥有这一功能的语言编程,程序员们通常不用去关心内存泄漏的问题,而当我们用 C/C++写程序时,这却是最重要的需要认真考虑却又很容易出错的问题之一。数据结构是程序构成的重要部分,链表、树、图这些在用C 编程时需要仔细表达的问题在Python 中简单了很多。在Python 中,最基本的数据结构就是数组、序列和哈希表,用它们想要表达各种常见的数据结构是非常容易的。没了定义指针、分配内存的任务,编程变得有趣了。CORBA 是一种高级的软件体系结构,它是语言无关平台无关的。C++、Java 等语言都有CORBA 绑定,但与它们相比,Python 的 CORBA 绑定却容易很多,因为在程序员看来,一个 CORBA 的类和 Python 的类用起来以及实现起来并没有什么差别。没了复杂体系结构的困扰,用 Python 编写CORBA 程序也变得容易了。好钢要用在刀刃上,要想用有限的时间完成尽量多的任务,就要把各种无关的问题抛弃,而Python 恰恰提供了这种方法。跨平台又易扩展随着Linux 的不断成熟,越来越多的人转到Linux 平台上工作,软件的开发者自然就希望自己编写的软件可以在所有平台下运行。Java 一次编写处处运行的口号使它成为跨平台的开发工具的典范,但其运行速度却不被人们看好。实际上,几乎所有的著名脚本语言都是跨平台的,Python 也不例外。Python 不仅支持各种Linux/Unix 系统,还支持Windows,甚至在Palm 上都可以运行 Python 的程序。一个程序想要跨平台工作,不仅仅需要语言本身能够做到在平台之间兼容,在图形化界面的时代,还需要有能跨平台工作的 Widget。Python 不仅支持老一些的 TK,还支持新的GTK+、QT 以及wxWidget,而这些Widgets 都可以在多个平台上工作。通过它们,程序员就可以编写出漂亮的跨平台GUI 程序。Python 通常是运行在native 代码与脚本代码之间,程序员可以用 C/C++为 Python 编写各种各样的模块,这不仅可以让程序员以 Python 的方式使用系统的各种服务及用C/C++编写的优秀函数库和类库,还可以大幅度提高Python 程序的速度。用C/C++编写Python 的模块并不复杂,而且为了简化这一工作,人们还制作了不少工具用来协助这一工作。正是因为如此,现在各种常用的函数库和类库都有Python 语言的绑定,用 Python 可以做到的事情越来越多了。万能钥匙?Python 功能强大,但它却不是万能的。如果你要编写操作系统或驱动程序,很显然,Python 是做不到的。要写软件,没有哪个工具是万能的,现在之所以有那么多的编程语言,就是因为不同的语言适合做不同的事情。因此,选择适合自己的语言工具是最重要的。
Python编程语言可以应用在哪些方面
Python是一种跨平台的计算机程序设计语言。是一种面向对象的动态类型语言,最初被设计用于编写自动化脚本(shell),随着版本的不断更新和语言新功能的添加,越多被用于独立的、大型项目的开发。
1、软件开发:Python语言支持多函数编程,可以担任任何软件的开发工作,是它的标配能力。
2、科学计算:Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛,有更多的程序库的支持,做科学计算是非常合适的选择。
3、自动化运维:Python是作为运维工程师的首选编程语言,有诸多优势所在,是非常受喜欢的编程语言。
4、云计算:开源云计算解决方案OpenStack就是基于Python开发的。
5、web开发:基于Python的Web开发框架不要太多,比如耳熟能详的Django,还有Tornado,Flask。
6、网络爬虫:也称网络蜘蛛,是大数据行业获取数据的核心工具。能够编写网络爬虫的编程语言有不少,但Python绝对是其中的主流之一。
7、数据分析:结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石,Python是数据分析领域首选的编程语言。
8、人工智能:对于人工智能我想不用多介绍,是现在非常流行的一个行业,而人工智能也是未来的发展,Python是人工智能的首选编程语言。
优化Python编程的4个妙招
1. Pandas.apply() – 特征工程瑰宝
Pandas 库已经非常优化了,但是大部分人都没有发挥它的最大作用。想想它一般会用于数据科学项目中的哪些地方。一般首先能想到的就是特征工程,即用已有特征创造新特征。其中最高效的方法之一就是Pandas.apply(),即Pandas中的apply函数。
在Pandas.apply()中,可以传递用户定义功能并将其应用到Pandas Series的所有数据点中。这个函数是Pandas库最好的扩展功能之一,它能根据所需条件分隔数据。之后便能将其有效应用到数据处理任务中。
2. Pandas.DataFrame.loc – Python数据操作绝妙技巧
所有和数据处理打交道的数据科学家(差不多所有人了!)都应该学会这个方法。
很多时候,数据科学家需要根据一些条件更新数据集中某列的某些值。Pandas.DataFrame.loc就是此类问题最优的解决方法。
3. Python函数向量化
另一种解决缓慢循环的方法就是将函数向量化。这意味着新建函数会应用于输入列表,并返回结果数组。在Python中使用向量化能至少迭代两次,从而加速计算。
事实上,这样不仅能加速代码运算,还能让代码更加简洁清晰。
4. Python多重处理
多重处理能使系统同时支持一个以上的处理器。
此处将数据处理分成多个任务,让它们各自独立运行。处理庞大的数据集时,即使是apply函数也显得有些迟缓。
关于优化Python编程的4个妙招,青藤小编就和您分享到这里了。如果您对python编程有浓厚的兴趣,希望这篇文章可以为您提供帮助。如果您还想了解更多关于python编程的技巧及素材等内容,可以点击本站的其他文章进行学习。
如何提升Python编程能力
一、Python之禅(The Zen of Python)
The Zen of Python是Python语言的指导原则,遵循这些基本原则,你就可以像个Pythonista一样编程。具体内容你可以在Python命令行输入import this看到:
The Zen of Python, by Tim Peters
Beautiful is better than ugly.
# 优美胜于丑陋(Python以编写优美的代码为目标)
Explicit is better than implicit.
# 明了胜于晦涩(优美的代码应当是明了的,命名规范,风格相似)
Simple is better than complex.
# 简洁胜于复杂(优美的代码应当是简洁的,不要有复杂的内部实现)
Complex is better than complicated.
# 复杂胜于凌乱(如果复杂不可避免,那代码间也不能有难懂的关系,要保持接口简洁)
Flat is better than nested.
# 扁平胜于嵌套(优美的代码应当是扁平的,不能有太多的嵌套)
Sparse is better than dense.
# 间隔胜于紧凑(优美的代码有适当的间隔,不要奢望一行代码解决问题)
Readability counts.
# 可读性很重要(优美的代码是可读的)
Special cases aren't special enough to break the rules.
Although practicality beats purity.
# 即便假借特例的实用性之名,也不可违背这些规则(这些规则至高无上)
Errors should never pass silently.
Unless explicitly silenced.
# 不要包容所有错误,除非你确定需要这样做(精准地捕获异常,不写except:pass风格的代码)
In the face of ambiguity, refuse the temptation to guess.
# 当存在多种可能,不要尝试去猜测
There should be one-- and preferably only one --obvious way to do it.
# 而是尽量找一种,最好是唯一一种明显的解决方案(如果不确定,就用穷举法)
Although that way may not be obvious at first unless you're Dutch.
# 虽然这并不容易,因为你不是 Python 之父(这里的Dutch是指Guido)
Now is better than never.
Although never is often better than *right* now.
# 做也许好过不做,但不假思索就动手还不如不做(动手之前要细思量)
If the implementation is hard to explain, it's a bad idea.
If the implementation is easy to explain, it may be a good idea.
# 如果你无法向人描述你的方案,那肯定不是一个好方案;反之亦然(方案测评标准)
Namespaces are one honking great idea -- let's do more of those!
# 命名空间是一种绝妙的理念,我们应当多加利用(倡导与号召)
这首特别的“诗”开始作为一个笑话,但它确实包含了很多关于Python背后的哲学真理。Python之禅已经正式成文PEP 20,具体内容见:PEP 20
二、PEP8: Python编码规范(PEP8: Style Guide for Python Code)
Abelson Sussman在《计算机程序的构造和解释》一书中说道:程序是写来给人读的,只是顺带让机器执行。所以,我们在编码时应该尽量让它更易读懂。PEP8是Python的编码规范,官方文档见:PEP 8,PEP是Python Enhancement Proposal的缩写。PEP8包括很多编码的规范,下面主要介绍一下缩进和命名等内容。
空格和缩进(WhiteSpace and Indentation)
空格和缩进在Python语言中非常重要,它替代了其他语言中{}的作用,用来区分代码块和作用域。在这方面PEP8有以下的建议:
1、每次缩进使用4个空格
2、不要使用Tab,更不要Tab和空格混用
3、两个方法之间使用一个空行,两个Class之间使用两个空行
4、添加一个空格在字典、列表、序列、参数列表中的“,“后,以及在字典中的”:“之后,而不是之前
5、在赋值和比较两边放置一个空格(参数列表中除外)
6、紧随括号后面或者参数列表前一个字符不要存在空格
Python命名
命名规范是编程语言的基础,而且大部分的规范对于高级语言来说都是一样的,Python的基本规范如下:
1、方法 属性:joined_lower
2、常量:joined_lower or ALL_CAPS
3、类:StudlyCaps
4、类属性:interface, _internal, __private
5、camelCase only to conform to pre-existing conventions
以上内容只是对PEP8做了非常简单的介绍,由于今天的主题不在于此,所以就不在这里多讲。想要更加深入的了解Python编码规范,可以阅读PEP8官方文档和Google Python编码规范等内容。
三、交换变量值(Swap Values)
在其他语言中,交换两个变量值的时候,可以这样写:
temp = a
a = b
b = temp
在Python中,我们可以简单的这样写:
b, a = a, b
可能你已经在其他地方见过这种写法,但是你知道Python是如何实现这种语法的吗?首先,逗号(,)是Python中tuple数据结构的语法;上面的语法会执行一下的操作:
1、Python会先将右边的a, b生成一个tuple(元组),存放在内存中;
2、之后会执行赋值操作,这时候会将tuple拆开;
3、然后将tuple的第一个元素赋值给左边的第一个变量,第二个元素赋值给左边第二个变量。
再举个tuple拆分的例子:
In [1]: people = ['David', 'Pythonista', '15145551234']
In [2]: name, title, phone = people
In [3]: name
Out[3]: 'David'
In [4]: title
Out[4]: 'Pythonista'
In [5]: phone
Out[5]: '15145551234'
这种语法在For循环中非常实用:
In [6]: people = [['David', 'Pythonista', '15145551234'], ['Wu', 'Student', '15101365547']]
In [7]: for name, title, phone in people:
...: print name, phone
...:
David 15145551234
Wu 15101365547
PS:在使用这种语法时,需要确保左边的变量个数和右边tuple的个数一致,否则,Python会抛出ValueError异常。
更多tuple的例子:
1,
(1,)
(1,)
(1,)
(1)
1
value = 1,
value
(1,)
我们知道:逗号(,)在Python中是创建tuple的构造器,所以我们可以按照上面的方式很方便的创建一个tuple;需要注意的是:如果声明只有一个元素的tuple,末尾必须要带上逗号,两个以上的元素则不需要。声明tuple的语法很简单,但同时它也比较坑:如果你发现Python中的变量不可思议的变成了tuple,那很可能是因为你多写了一个逗号。。
四、Python控制台的"_"(Interactive "_")
这是Python中比较有用的一个功能,不过有很多人不知道(我也是接触Python很久之后才知道的)。。在Python的交互式控制台中,当你计算一个表达式或者调用一个方法的时候,运算的结果都会放在一个临时的变量 _ 里面。_(下划线)用来存储上一次的打印结果,比如:
import math
math.pi / 3
1.0471975511965976
angle = _
math.cos(angle)
0.50000000000000011
_
0.50000000000000011
PS:当返回结果为None的时候,控制台不会打印,_ 里面存储的值也就不会改变。
五、合并字符串(Building Strings from Sub strings)
假如现在有一个list,里面是一些字符串,你现在需要将它们合并成一个字符串,最简单的方法,你可以按照下面的方式去处理:
colors = ['red', 'blue', 'green', 'yellow']
result = ''
for s in colors:
result += s
但是,很快你会发现:这种方法非常低效,尤其当list非常大的时候。Python中的字符串对象是不可改变的,因此对任何字符串的操作如拼接,修改等都将产生一个新的字符串对象,而不是基于原字符串。所以,上面的方法会消耗很大的内存:它需要计算,存储,同时扔掉中间的计算结果。正确的方法是使用Python中的join方法:
result = ','.join(colors)
当合并元素比较少的时候,使用join方法看不出太大的效果;但是当元素多的时候,你会发现join的效率还是非常明显的。不过,在使用的时候请注意:join只能用于元素是字符串的list,它不会进行任何的强制类型转换。连接一个存在一个或多个非字符串元素的list时将抛出异常。
风变编程python课程是怎么吸引人不断学习下去的?
根据我过往的学习经验来看,我认为风变编程python课程主要是抓住了这几个点。第一是游戏化学习,风变编程python营造了一种正面的积极的学习环境,正面的积极情绪对学习效果影响很大,更容易带给人高效率和求知欲。第二是交互式设计,聊天式的设计有助于增强学习者的自主性。第三是项目制教学,学Python是需要做很多练习的,风变编程无论是课堂中,还是课后,都有很多项目可以实操,把一个个项目完成更能够让人有成就感。
Python的应用前景。
Python的应用方向
1. 常规软件开发
Python支持函数式编程和OOP面向对象编程,能够承担任何种类软件的开发工作,因此常规的软件开发、脚本编写、网络编程等都属于标配能力。
2. 科学计算
随着NumPy, SciPy, Matplotlib, Enthought librarys等众多程序库的开发,Python越来越适合于做科学计算、绘制高质量的2D和3D图像。和科学计算领域最流行的商业软件Matlab相比,Python是一门通用的程序设计语言,比Matlab所采用的脚本语言的应用范围更广泛,有更多的程序库的支持。虽然Matlab中的许多高级功能和toolbox目前还是无法替代的,不过在日常的科研开发之中仍然有很多的工作是可以用Python代劳的。
3. 自动化运维
这几乎是Python应用的自留地,作为运维工程师首选的编程语言,Python在自动化运维方面已经深入人心,比如Saltstack和Ansible都是大名鼎鼎的自动化平台。
4. 云计算
开源云计算解决方案OpenStack就是基于Python开发的,搞云计算的同学都懂的。
5. WEB开发
基于Python的Web开发框架不要太多,比如耳熟能详的Django,还有Tornado,Flask。其中的Python+Django架构,应用范围非常广,开发速度非常快,学习门槛也很低,能够帮助你快速的搭建起可用的WEB服务。
6. 网络爬虫
也称网络蜘蛛,是大数据行业获取数据的核心工具。没有网络爬虫自动地、不分昼夜地、高智能地在互联网上爬取免费的数据,那些大数据相关的公司恐怕要少四分之三。能够编写网络爬虫的编程语言有不少,但Python绝对是其中的主流之一,其Scripy爬虫框架应用非常广泛。
7. 数据分析
在大量数据的基础上,结合科学计算、机器学习等技术,对数据进行清洗、去重、规格化和针对性的分析是大数据行业的基石。Python是数据分析的主流语言之一。
8. 人工智能
Python在人工智能大范畴领域内的机器学习、神经网络、深度学习等方面都是主流的编程语言,得到广泛的支持和应用。
当然,除了以上的主流和前沿领域,Python还在其他传统或特殊行业起着重要的作用。
摘自刘江的Python教程
python编程推广方案的介绍就聊到这里吧,感谢你花时间阅读本站内容,更多关于python创意编程、python编程推广方案的信息别忘了在本站信途科技进行查找。